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Introduction.

Scientific research on human thinking and problem solving started around the time of the Gestalt
Revolution. Gestalt psychologists emphasized the role of organizing principles in both perception and
thinking. In perception, the organizing principles took the form of a simplicity principle determining
figure-ground organization and perceived shape. In problem solving, the organizing principles led to the
concept of insight. In both perception and thinking, experimental data came from introspection and
verbal protocols. This kind of qualitative information seemed sufficient to demonstrate the operation of
the organizing principles. However, it was not sufficient to study the nature of the underlying mental
mechanisms. In order to learn what information is used and how it is analyzed, one has to perform
parametric studies, in which behavioral response (accuracy and response times) is measured, while the
nature of the stimulus is systematically varied. Parametric studies were not news in perception: the
concept of threshold had been known for about a century before Gestalt Revolution. However,
parametric studies were, and still are news in thinking and problem solving. Problems, unlike physical
objects, are not represented by continuous variables. For example, the size of an object can be
manipulated with an arbitrary precision and one can produce many objects that are identical except for
size. However, physics and math problems are best represented by graphs and one problem cannot be
changed to another with arbitrarily small steps. This makes parametric studies difficult. A given subject
is usually tested with only one instance of a given physics or math problem. But performance (accuracy
and response time) obtained from one instance is insufficient to infer the underlying mental mechanisms.
Introspection and verbal protocol seemed the only way to go.

This state of affairs started to change a decade ago, when the interest of cognitive psychologists
shifted to optimization problems, such as the Traveling Salesman Problem (TSP). TSP is defined as
follows: given a set of points (called cities), find a tour of the points with the shortest length. A tour is a
path which passes through each point once, and returns to the starting point. The number of tours in a
problem with N points is (N-1)!/2. Clearly, finding a shortest tour is an optimization problem. This
problem is difficult because the number of tours is large, even for moderate values of N. Optimization
problems, such as TSP, naturally lend themselves to parametric studies. There are a large number of
instances of TSP, the instances can be systematically varied, and performance can be measured
quantitatively by response time and accuracy.

It is worth noting that optimization problems are ubiquitous in cognition. Minimizing a cost
function has been a standard way to describe: perception of objects (e.g., Knill & Richards, 1996; Pizlo,
2001), figure-ground organization (Koffka, 1935; Pizlo et al., 1997), decision making and games (e.g.,
Simon, 1996; von Neuman & Morgerstern, 1944), motor control (e.g., Harris, 1998), categorization (e.g.,
Nosofsky, 1986), formulating scientific theories (e.g., Li & Vitanyi, 1997; Pitt et al., 2002), as well as
human communication (e.g., Quine, 1960). The fact that the human mind optimizes is not surprising
considering that the mind is a result of a long evolutionary process, in which the best adaptation was
achieved when the best solutions to everyday life problems were provided. If optimization is the sine qua
non of cognition, then cognition, including thinking and problem solving, should be studied in
optimization tasks.

Finding the shortest TSP tour is difficult because TSP is NP-hard. This means that in the worst
case, finding the shortest tour may lead to an exhaustive search through all tours. Because of
computational intractability of TSP, there has been growing interest in designing algorithms that can find
tours, which are close to the shortest tour, while the time it takes to find the tours does not grow too fast
with the problem size N. Review of such algorithms can be found in Lawler et al. (1985) and Gutin &
Punnen (2002). Can humans solve TSP well? The answer is in the affirmative. More specifically,
humans can produce optimal or near-optimal solutions in a linear time, as long as the problem is
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presented on a Euclidean plane. A review of recent results on human performance with Euclidean TSP
(E-TSP) can be found in the first issue of the Journal of Problem Solving (http://docs.lib.purdue.edu/jps/.

The next section presents a brief overview of our model of the mental mechanisms involved in
solving E-TSP. The full description can be found in Pizlo et al. (2006). The following two sections
present psychophysical experiments and corresponding computational models on human performance in
shortest path problem (SPP) and in E-TSP in the presence of obstacles (E-TSP-O). The report is
concluded with a summary and suggestions for future research. Our related work on the 15-puzzle,
another NP hard problem, has been published by Pizlo & Li (2005). We studied how subjects solve
versions of this puzzle having different sizes. We modeled the mental mechanisms by using a graph
pyramid model. My work on pyramids had some impact on my theory of shape perception. The theory
will be published in a book (Pizlo, 2007). The full list of publications that resulted from this project can
be found at the end of this document.

A Pyramid Model for Euclidean-TSP (E-TSP).

Pyramid algorithms have been used extensively to model human visual perception (Jolion &
Rosenfeld, 1994; Pizlo et al., 1995, 1997). These algorithms were a natural choice for modeling TSP
mental mechanisms because TSP is presented to the subjects as a visual task. Our pyramid model
developed for E-TSP works by first generating a multiresolution (pyramid) representation of the problem,
and then constructing a tour using this representation and a sequence of top-down refinements. The first
version of this model was presented in Graham et al. (2000), and the second version in Pizlo et al. (2006).
Both versions received support in experiments, in which subjects solved E-TSP with 6-50 cities. The
more recent version of the model is briefly described below.

Construction of the pyramid representation.

Pyramid representation involves a set of "images" that are characterized by more precise, local
information on the lower layers of the pyramid and coarser, global information on the top layers of the
pyramid. In the pyramid representation the base of the pyramid is the set of points in the problem. This
information is exact, but also very local: there is no information about the relationship among the points
in the problem. Only the coordinates of each city are stored. In the layer above the base, some points are
grouped together to form clusters, which are then abstracted away as a single point, representing the
cluster's center of gravity. The exact information about the positions of points is not present at this layer,
but new information about the relationship among points has been gained. Near the apex of the pyramid,
the problem may be reduced to a handful of clusters, each cluster representing dozens or even hundreds of
points. Information about the general shape of the problem replaces information about the exact positions
of points.

The first version of the E-TSP algorithm used a bottom-up clustering involving Gaussian blurring
(Graham et al., 2000). In that algorithm, the number of clusters on a given layer was not directly
controlled and it depended on the distribution of points. In the more recent version, the clustering is top-
down and the number of clusters is controlled. Specifically, the nth layer from the apex has 2 2, clusters.
The child-parent relations between these clusters (regions) on the different layers of the pyramid are fixed
Figure 1 illustrates partitioning of cities on several layers of the pyramid representation.
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Figure 1. Multiresolution (pyramid) representation ofa TSP problem. The red lines represent the

boundaries of the clusters.

Construction of the E-TSP tour.

Once the model has generated a pyramid representation of an E-TSP problem, it then takes
advantage of the representation to find a good (optimal or near-optimal) tour. Basically, the overall
'shape' of a good TSP tour of the individual points should be an optimal tour of the clusters on the top
layers of the pyramid representation. So, the model first finds the best tour of the clusters on the top-most
layer of the pyramid, a trivial task as the top-most layer of the pyramid will have a small number of
clusters, and then 'refines' this tour. In doing so, the model relies on the fact that, in a pyramid
representation, each cluster on any given layer has 'child' clusters on the layer immediately below it in the
pyramid. A cluster in the tour is removed, and its children are inserted into the tour near its location. The
exact position is determined by local search, specifically local cheapest insertion: for each child cluster,
the model considers a small, constant number of positions near the position of the parent node and finds a
position that minimizes the length of the tour. The model then inserts the child cluster into the tour at that
position. This process of top-down refinement continues until the tour consists of points on the bottom
layer of the pyramid.

The tour refinement process incorporates "foveating" and "eye movements". In the first version
of the model (Graham et al., 2000), the top-down refinement was carried out one layer at a time. Clusters
in the tour which were on a given layer were replaced by their child clusters on the layer below. Once all
of the clusters on a given layer had been refined, the refinement moved on to the next layer. But this is
not how humans solve the problem. Due to the fact that the distribution of receptors on the retina is not
uniform, human subjects move their eye around the problem while solving it. The new version of our
model simulates this process. First, the pyramid representation is changed so that only a small region in
the problem around model's fovea involves the representation in which individual cities are "visible".
For other regions, the highest resolution available is a function of the distance from the fovea. The top-
down tour refinement focuses on a specific area of the tour. Refinement moves around the E-TSP
instance, so that the model produces a complete, finished part of the tour in one region before moving on
to the next (see http://psych.purdue.edu/tsp/workshop/downloads.html for an animation). Figure 2 shows
a snapshot of this process. The green part of the tour is represented on the bottom layer of the pyramid
and it goes through individual cities. Other parts pf the tour connect centers of gravity of city clusters.
This model was shown to provide good fits to the results of several subjects, as measured by the
proportion of optimal solutions and the average solution error. The fits are shown in Figure 3. Note that
individual variability is quite small. The computational complexity of the model is low (O(NlogN)).
Recall that the subjects solve the E-TSP problems in time that is proportional (on average) to the number
of cities.
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Figure 2. A snapshot from the solution process by the bisection foveating pyramid.
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Figure 3a. Model fits to the performance of individual subjects. Average error.
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Foveating Bisection Pyramid Model
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Figure 3b. Model fits to the performance of individual subjects. Proportion of optimal solutions.

The pyramid model was also tested on large problems: 200-1000 cities. The model's average
solution is about 10% longer than the shortest tour (see http://psych.purdue.edu/tsp/workshop/ for details).
The average time to solve the 1000 city TSP problem is 40 seconds. Clearly, the pyramid model is quite
effective and can be used in a number of applications.

Next, I will describe a study that generalized the results and the model to the case of E-TSP in the
presence of obstacles (E-TSP-O). Figure 4 illustrates an E-TSP-O problem. The task is to produce a tour
in such a way that the tour goes "around" the obstacles. When obstacles are present, the distances
between pairs of cities are not Euclidean distances, anymore. So, the problem is not Euclidean.
Nevertheless, the distances satisfy metric axioms, so the TSP problem is metric. There are two
motivations for studying E-TSP-O. First is to use TSP problems that more closely reflect characteristics
of real life problems. Second is to provide additional test of pyramid model. One of the two main aspects
of the pyramid model is the use of hierarchical clustering. Clearly, by using obstacles, proximity relations
are changed and clusters are modified. Will introducing obstacles make the problem more difficult for
the subjects? Will it make the problem more difficult for the model? The model will surely have to be
modified. What is the nature of the required modifications?

Intuitively, E-TSP-O seems more difficult than E-TSP. In the extreme case, when obstacles form
a maze, as shown in Figure 5, a human subject can no longer cluster points visually: points that are
arbitrarily close in the image may have arbitrarily long path between them due to obstacles. In such a
case, the only way to proceed is to perform search for paths connecting the pairs of points. Are the
shortest paths always found? Are obstacles used at the stage of clustering or at the stage of constructing
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the tour? The first question is addressed in the next section, and the second question is addressed in the
following one.

Figure 4. 20 city E-TSP with 10 obstacles.

Figure 5. E-TSP in a maze.

Shortest path problem in the presence of obstacles.

Consider the E-TSP-O problem shown in Figure 6. There are eight square-shaped obstacles, each
square having two gaps. The gaps are always on opposite sides of a square and the sides (up-down, vs.
lefty-right) change from one square to another. This problem resembles the TSP in a maze shown in
Figure 5. The optimal solution of this problem is shown as well. It is not obvious to the reader that this
solution is indeed optimal. In particular, it is not obvious that the paths involved in this solution are
shortest paths for the pairs of cities. They must be; otherwise, the tour would not be the shortest one.

Before we understand and model how humans solve E-TSP in the presence of obstacles, we have
to understand how humans find paths between pairs of points in the presence of obstacles. Do they
always find the shortest path? If not, what path do they choose?
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Figure 6. 10 city E-TSP with eight complex obstacles. The optimal tour is shown on the right.

Experiment: Human performance on SPP problem.

Subjects: Two subjects were tested. They ran the same problems in a different and randomly
determined order.

Stimuli: The SPP problems were displayed on a computer screen in a window of512x512 pixels.
Purdue TSP Application was used. There were a total of eight sessions representing two types of
obstacles (simple vs. complex) and the number of obstacles (1, 2, 4 and 8). There were 25 randomly
generated problems per session. Figure 7 illustrates examples of three of these conditions.

Figure 7. SPP with eight and four complex obstacles, and with eight simple obstacles.

Results.

With complex obstacles the subject had to move and click the mouse more often than with simple
obstacles. As a result, the total time to solve the problems was substantially longer with complex
obstacles. In order to evaluate the complexity of mental mechanisms not confounded with moving and
clicking the mouse, the time per vertex was plotted (see Figure 8). Time per vertex is defined as a total
time of solving each problem divided by the number of vertices (including the points representing the
start and the goal) in the polygonal line representing the solution tour. Note that the times for both simple
and complex obstacles tend to increase with the number of obstacles and the increase rate is somewhat
faster with complex obstacles. This fact suggests that the mental mechanisms have average
computational complexity higher than linear. This contrasts with E-TSP, where the average time per city
does not depend on the number of cities (Pizlo et al., 2006). This comparison has interesting
implications. E-TSP is computationally more difficult than SPP. But, mental mechanisms are
computationally more complex in the case of SPP than E-TSP. This difference in complexity of mental
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mechanisms is most likely related to the fact that the human visual system can analyze large parts of E-
TSP, but not SPP, in a parallel fashion. When obstacles are present, the shortest path between a pair of
cities is not a straight line. Establishing which path is the shortest, involves examining several alternative
paths, one after another.

Time per click
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12 - - - .js - simple

02 • js- complex
=_- -.• -- -------- - -B[- -Zp - simple

1. 02 --wP- Zip - complex

02
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Number of objects

Figure 8. Solution time per vertex in SPP.

The proportion of optimal solutions and the average error are shown in Figure 9. Average error is
computed by subtracting the length of the shortest path from the length of the path produced by the
subject and normalizing the result to the former. The results for simple obstacles indicate that the subjects
are almost always able to produce the shortest paths; the small departures from optimality are likely to
result from the visual noise. If the visual system could measure distances precisely, all paths produced by
the subjects would have been shortest. This was not the case with complex obstacles. Here, the
proportion of optimal solutions dropped, and the average error increased substantially as the number of
obstacles increased. Clearly, the subjects were not always able to produce shortest paths in this case.
They performed search when they solved the SPP problem, as indicated by the analysis of solution time,
but the search was limited and did not guarantee finding the shortest path when complex obstacles were
used. This suggests that with complex obstacles, a greedy algorithm was used by subjects, most likely
due to the limitations of the short term memory. Specifically, the subjects cannot store all partial paths, as
required by the optimal algorithm. The algorithm that guarantees finding the shortest path, as well as a
greedy algorithm that does not, are presented in the next section.
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Figure 9. Proportion of optimal solutions (left) and average solution error in SPP (right).
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Simulation models for SPP.

First, an algorithm for finding the shortest path is described. We applied Dijkstra's algorithm to
the "visibility graph". The visibility graph determines which points in a 2D image are "visible" from any
given point. If the point representing the goal is visible from the start point, then the straight line segment
connecting these two points is the shortest path. Otherwise, all endpoints of obstacles that are visible
from the start point are found and the endpoint that is closest to the start point is selected. Next, all
endpoints of obstacles that are visible from the selected point are found, and the shortest path to each of
these points from the start point is stored. Again, the endpoint that is closest to the start point is selected.
The process is repeated recursively, until the goal is reached. The shortest path from the paths that were
stored is guaranteed to be the shortest path from the start to the goal. Recall that the subjects almost
always found the shortest path when simple obstacles were used (Figure 9). Subjects' performance can
be modeled by this algorithm when the information about the points and obstacles is modified by adding
visual noise.

Noisy Model Error
1Q-

9
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7-k=1,I

-0-- k=3,3
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1 2 3 4 57

Number of squares

Figure 10. Average error of a greedy SPP model applied to complex obstacles for several levels of local
search.

A greedy algorithm that was a modification of the algorithm described above was used to model
the subjects' performance with complex obstacles. The visual noise was incorporated in the algorithm by
adding a Gaussian noise to every estimate of distance. The mean value of the noise was zero and the
standard deviation was 3% of the estimated distance (3% is a Weber fraction in line length discrimination
task - Watt, 1987). The algorithm described above was applied to the points representing the start and the
goal and to the first ki obstacles, counting from the start point. (k, represents the limitations of the short
term memory.) For example, when k1=2, there are at most four different paths that have to be stored in
short term memory). Once SPP for the first ki obstacles was determined, the algorithm made k2 steps to
go around the first k2 obstacles, and the process was repeated by replacing the start point by the point
reached after k 2 steps. Obviously, k2<kl. Figure 10 shows the model's average solution error for several
values of k1, k2. Figure 11 compares the model's performance for kr=k 2=2 to that of the subjects.
Although the fit is not perfect, the graphs show that the effect of the number of complex obstacles on the
solution error and proportion of optimal solutions is similar in the case of the model and the two subjects.
If the model were fitted to individual problems, the fit would have been substantially better.

Next, the subject's performance in E-TSP-O with three types of obstacles was measured and
modeled. The obstacles varied in size and shape.
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Figure 11. The comparison of the model and the subjects' average errors (left) and proportion of optimal
solutions (right) in SPP with complex obstacles.

Euclidean TSP with obstacles (E-TSP-O).

Experiment: Human performance on E-TSP-O.

Subjects. Two subjects were tested. They ran the same problems in a different and randomly
determined order.

Stimuli. The TSP problems were displayed on a computer screen in a window of 512x512 pixels.
Eight sets of 25 problems were used. Each problem consisted of 20 randomly placed points and 10
randomly placed obstacles. The obstacle length and the obstacle shape varied across sets. Four obstacle
lengths were used: 100, 144, 208, and 300 pixels. Three different shapes were used: straight line
segments, L shaped and C shaped obstacles (see Figure 12 for examples). If there was an isolated city
due to the placement of obstacles, a randomly placed gap was produced in the relevant obstacle to
produce a connection to this city.

0/ '..." . ',

IS 0
•*

Figure 12. 20 city E-TSP-O with I, L and C obstacles.

Results.

The average solution time per vertex is shown in Figure 13 and the average solution error is
shown in Figure 14. The number of vertices in the solution tour is equal to the number of cities plus the
number of obstacles whose endpoints had to be included in the solution. The rationale for using time per
vertex is the same as that for using time per city in Euclidean TSP. Each is fairly insensitive to the time it
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takes to move and click the mouse. Longer obstacles are likely to lead to more clicks because more
obstacles interfere with the solution tour. The error is computed by subtracting the length of the shortest
tour from the length of the subject's tour and normalizing the result to the former.

Time per vertex - subject js Time per vertex - subject zp

2 5 25

S 0 140 1",' 20n 210 2-10 3 50 100 1 S 0 240 251 '10, 0
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Figure 13. Time per vertex in E-TSP-O.

Solution time was rather systematically affected by the length of the obstacles. It increased from
0.8 to 1.5 sea per vertex in the case of JS and from 1.4 to 2.4 see per vertex in the case of ZP. For

comparison, time per city in the case of 20 city Euclidean TSP was 0.94 see for JS and 1.21 sec for ZP.
The solution error, however, was not systematically affected by the obstacle length. Furthermore, the
errors with obstacles were not very different from errors without obstacles. JS's solution error with 20
city Euclidean TSP was 1.2% and ZP's error was 3. 1%.

Mean error - subject js Mean error -subject zp
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Figure 14. Average error in E-TSP-O.

Discussion.

The effect of the obstacle length on the time per vertex suggests that the complexity of the mental
mechanisms increases with an obstacle length. This seems intuitively obvious: longer obstacles force the
subject to perform more search. However, once the subject performs search, the tours were not
necessarily longer, as measured by the solution error. How should the pyramid model for E-TSP be
modified to account for these results on E-TSP-O?
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Simulation Models.

A pyramid model for E-TSP developed by Pizlo et al. (2006) was elaborated into a pyramid
model for E-TSP-O. Two versions of the E-TSP-O model are presented here. The first version, called
Model 1, differed from the E-TSP model only in the way it performed the cheapest insertion during the
top-down tour refinement. The hierarchical clustering was performed the same way as in E-TSP of Pizlo
et al. (2006). Namely, obstacles were ignored during clustering. They were used only at the second stage
when the tour was produced. While performing cheapest-insertion, Model 1 determined and used the
shortest path between a given pair of cities. The shortest path was determined by applying Dijkstra
algorithm to the visibility graph. The second version of E-TSP-O, called Model 2, is identical to Model
1, except that the obstacles are also used at the stage of clustering. Specifically, after the clusters are
formed without obstacles, the shortest paths among centers of gravity of clusters are computed. If a given
child node was closer to another node's parent, than to its own parent, the link in the pyramid
representation was changed to represent this proximity relation.

Fitting the model to the subject's results was done for each problem individually. Specifically,
the model tried all points as starting points as well as both directions of the tour (clockwise and
counterclockwise). For each starting point and starting directions the amount of local search was varied
by changing the value of parameter k (see Pizlo et al., 2006). This parameter specifies how many nodes
were tried in the cheapest insertion method. The tour, whose error was closest to the error of the subject
on a given problem, was taken as the best fitting tour.

Mod.l 2 - subject js Model 2 - subject zp
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Figure 15. Performance of Model 2 in E-TSP-O.

Figure 15 shows the average solution errors of the best fitting tours for Model 2. The fits by
Model I were slightly worse. It seems that each model is a possible model of the underlying mental
mechanisms. Model I can represent trials, in which the subject starts solving the problem without
examining the distribution of cities and obstacles in any greater detail. The information about obstacles is
taken into account during the solution process. Model 2 can represent trials, in which the subject begins
with examining the problem first and determining the actual distances among clusters. Only after the
problem is examined, the subject starts producing the tour. Reports of the two subjects, as well as the
actual data suggest that both approaches were used. It is unclear at this point how the subject decides to
choose which approach (model) is used for a given problem.

Summary and Conclusions

The study on E-TSP-O and SPP showed that humans can find near-optimal solutions to TSP
problems not only with Euclidean distances, but also with non-Euclidean ones, when the obstacles are
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placed on a Euclidean plane. As such, this study generalizes prior results, to TSP problems that are closer
to real life applications. In both types of problems, humans can solve the problems quite well without
performing exhaustive search. However, the complexity of the mental mechanisms is higher in the case
of E-TSP-O due to greater amount search that is needed to establish clusters and/or solve SPP problem.
In order to account for subjects' results, an SPP model was formulated and the E-TSP model was
elaborated to an E-TSP-O model. With spatially simpler obstacles, the subjects appear to solve the SPP
problem optimally. But with more complex obstacles, SPP problem is not solved optimally. In such
cases, the subjects use a greedy algorithm, which is likely to lead to larger errors in E-TSP-O.

General Summary

In this project, the subjects were tested in combinatorial problems and demonstrated very good
performance. The search spaces were very large making it impossible to represent the whole problem at
any one time during solving it. This fact implies that before the subject can start solving a problem, he or
she has to construct an effective mental representation. The mental representation was modeled by a
multiresolution pyramid. The pyramid algorithm was used to represent a problem and then to provide a
solution in a global-to local sequence of approximations.
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Software - Purdue TSP Application.

Psychophysical experiments were performed by using the Purdue TSP Application (TSPApp).
The demo version of TSPApp can be found at: http://psych.purdue.edu/tsp/workshop/downloads.html.
The full version, which is being constantly updated and revised, is available from Z. Pizlo
(pizlo(2psych.purdue.edu). TSPApp is a program written in C++, which allows generating TSP
problems, testing human subjects, determining the optimal tour and running simulations with our TSP
model. TSPApp also includes functions for testing the minimum spanning tree (MST) and shortest path
(SPP) problems. It allows generating Euclidean TSP problems, as well as TSP problems with obstacles.
The obstacles vary with respect to size and shape.
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Final Report
Workshop on Human Problem Solving:

Difficult Optimization Tasks
Zygmunt Pizlo and Edward Chronicle

Project Activities and Findings

The major activity involved organizing a workshop, running it and disseminating the
presentations. An important focus was to facilitate interactions amongst international researchers
working in the same area: human performance with optimization problems. No previous
meeting has permitted such interactions. A number of collaborative relationships have formed as
a result of this workshop.

Outreach Activities

The information about the workshop, including the talks and selected software are available on
the workshop web site:

http://psych.purdue.edu/tsp/workshop/

After the workshop, a mailing list and a web site for those interested in problem solving were
setup. The url of the web site is as follows:

http://spiderman.psych.purdue.edu/problem solving/people/

There are currently 30 names on the web site. The mailing list itself, contains 90 persons. Not
everyone from those on the mailing list put their contact information on the web site.

A new electronic journal, called the Journal of Problem Solving (JPS) was started:

http://docs.lib.purdue.edu/ips/

This is the first journal dedicated to human problem solving. The first issue will appear this Fall.

Publications and Products

Chronicle, E.P. & Pizlo, Z.P. Human performance with optimization problems: when, how and
why (in preparation).

Contributions within Discipline

This workshop helped to initiate a new interest in human problem solving. Specifically, it
helped identify researchers who are interested in studying how humans solve difficult
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combinatorial problems. Combinatorial problems are of special interest because they are
'computationally intractable', and yet, humans are able to provide very good solutions quickly.
Understanding the underlying mental mechanisms is of fundamental importance for psychology
of problem solving and decision making in particular, and human cognition in general.

Contributions to Other Disciplines

The workshop attracted not only psychologists but also researchers in computer science, artificial
intelligence and operations research. Clearly, the fact that human mind involves some powerful
combinatorial optimization mechanisms is of interest to those computer scientists and engineers
who are trying to formulate better and better algorithms for solving difficult problems. The
workshop, the mailing list and the new journal are likely to establish a multidisciplinary
collaboration between psychology and Al, a collaboration that hardly existed during the last 50
years.

Contributions to Human Resource Development

As already indicated, the workshop led to founding a new journal and setting up a mailing list. It
is expected that a new society will be formed with regular conferences. In the anticipation of the
regular conferences, one of the PIs (ZP) organized a special symposium at the 2006 Annual
Meeting of the Society for Mathematical Psychology:

http://www.cogs.indiana.edu/socmathpsych/meetings.html#socmeet

Contributions Beyond Science and Engineering

Understanding mental mechanisms that underlie problem solving is likely to improve the
methods that are used to teach how to solve problems. This will be very important on all levels
of education: from kindergarten to college and graduate school. Furthermore, it will allow
improving the working environment. In particular, in deciding how a given workload should be
divided between a human and a computer. This will lead to efficient human-computer
interaction systems.
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